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Time correlation of momentum in a collisionless plasma due to large fluctuations
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The present paper shows that in one-dimensional collisionless plasma, due to large fluctuation, the time
correlation of momentum asymptotically behaves inverse quadratically with time. The long-time tail correla-
tion is closely related to nonlinear Landau dampiig.B. Isichenko, Phys. Rev. Let{8, 2369 (1997].
Furthermore, it reveals the possible relationship between fluctuation and dispersion. The result indicates that
the long-time tail correlation can also occur in a reversibly dispersive system, where the previous theories are
invalid. A by-product proves that it may be efficient to investigate the dispersive features of collisionless
plasma in view of time correlationS1063-651%99)03206-1

PACS numbep): 52.25.Gj, 52.25.Dg

I. INTRODUCTION f(1',...,N1,... N;t,t)

Extensive attention has been paid to long-time tail corre- =f(1,... N;t)s(1'=1)...8(N"=N), (2
lation since Alder and Wainwright inspected the behavior in
molecular dynamical simulation in 1967]. Nowadays it ] S ]
is well known that such an asymptotic behavior is related tgvhere f(1,2, ... N;t) is the N-body distribution function.
the long wavelength dissipative hydrodynami&. In- Equatlon(;) is similar to the usual Liouville equation, but
deed, detailed calculations show that the time correlation inDOt SO trivial. It can be seen that Ed4) and(2) are greatly
volves hydrodynamic shear and thermal modes. Howeve,z,idva_ntageoqs to systgmatlcgil mtroductlon_ ofr_nlcroscop|c ap-
many questions remain unanswered. For instance, the quegr;ommatmn into the discussion of fluctuation in the absgnce
tion of whether long-time tail correlation exists beyond irre- Of the complete knowledge of té-body problem. In addi-
versibly dissipative system is of great interest to us. tlon_, emphasis is placed on that the initial condition is not
In the present work, based on the celebrated Bogoliubovaroitrary. _ _
Born-Green-Kirkwood-YvorBBGKY) theory and the mean For the one-body dynamical variatfe.g., momentunp),
field approximation, the time correlation of momentum of the local time correlation is
one-dimensional1D) collisionless plasma is derived. Fur-
thermore, the time correlation is proved to behave inverse
guadratically with time asymptotically, due to large fluctua-
tion.

N N
(it 7).~ | 3, 3 ot xpiatxx)

! ! .
Il. THE DERIVATION OF THE TIME CORRELATION XA ONGL LNt

OF MOMENTUM xd1’---dN’'d1---dN. 3
Consider arN-body interacting system and introduce the

so-called two-ensemble distribution  function, SaY,\ it th | tof th trv of N dth
f(2',2,... N,1,2 ... N;t+7¢t), which represents the 'f. it € emp ?ylznen.o € Symmelry of arguments and the
number density of such states as in the neighborhood of th%e Initions as foflows:

state (1,2...,N) at timet while in the neighborhood of the

state (1,2',...,N') at time {+ 7). Here k=(X,py),

K'=(X¢,P), andxs,pyS(X¢S,pis), are the coordinates and f,(1’,1;t+ T,t)=Nf f(1’,... N 1,... N;t+7,1t)
momenta of particles. Then, the well-known continuity equa-

tion and the measure preserving yield reads xd2'---dN’'d2:--dN, (4)

g N N
—+ v,-V, o+ F. -V,
ar kgl k7% kgl ko TP

f(1',2;t+ T,t):N(N—l)ff(l’, N LNt T
xf(l',... N1, ... N;t+7t)=0, ()
xXd2’---dN’d1d3---dN, 5)
where F; is the force exerted on particl& at time
(t+7). Moreover, it is not difficult to obtain the corre-
sponding initial condition Eq. (3) is reduced to
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fo(1",1t+ 7.t
(p(t)p(t+ T)>x:j P1P18(X—X1) 8(x—xq)f1 (1", L;t+ 7,1) 1l mY

=f1(1;0) 8(x1* —x1) 8(p1* —p1)

xdl'd1+ f PP S(X—X5) 8(X—X1)
=fy(1:t)8

xi—f v1(x1*,pr* ,)ds—x1>
xfy(1,2;t+ 7,t)d1’d2. (6) 0

So far, all the results are exact, but formal. In the rest of
this paper, they are put into practice in the case of 1D colli-
sionless plasméghence the bold type of,'s andp,’s is not
in use from now oh Based on the BBGKY theory and the fi(1'.2;t+7,t)="f,(x{* ,p1* ,xz,p2;t)
mean field approximation, the following equations can be

obtained from Egs(1), (4), and(5): :fz(xi_ forvl(xl pi* ,s)ds,p;

5 pi+f eE'[Xi(x1*,p* ,S),S]dS—Pl)’ (13

P P p)
— 4 vj——eE (x},7) —|f,(1".1t+ 7,H)=0, (7)

T axq apy +LeE’[xi(x1* p1* ,s),s]ds,xz,pz;t).

(14)

—E (x1,7)=—4me Jfl(l’,l;H—T,t)dpi—Zm , (8

dX
. Here(and henceforthwe denote the initial values of; , v,
and andp; at7=0 byx;*, v1*, andp;*. x;(s), vi(s) are the
trajectory and velocity of the motlon under the mean field
with the initial conditionsx;(0)=x;*, v1(0)=v1* . In the
derivation of the first equalities of Eq$13) and (14), the
measure preserving of the motion under the mean field is
used. The property of measure preserving is not so apparent
, (10 as in Hamiltonian dynamics. In fact, for the infinitesimal
time interval o,

J J J
E_—’_vla_l_eE (X11 )ap1:|fl(1 121t+71t):0: (9)

0
—E'(x},7)=—4me
IX l

ffl(l’,Z;t+T,t)dpi—Zn+
in the absence of external field. In Eg8) and (10), the L , b .

uniform ion background has been taken into accafifgthe X1~ X1(7)Fv1(7)d7, p1=pi(7)—eE[xy(7),7]67, (19
ion electric charge number, amd. is the ion number den-
sity. In fact, Egs.(7)—(10) can be derived on the basis o
more rigorous mathematics. The crucial point is that if the

f and the Jacobian is

parameters,l .. N in Eq. (1) are neglected for the moment, J(r+ 67)= d(xq,P1)
Eqg. (1) turns into the ordinary Liouville equation, thus the a(x1* ,p1*)
perturbation theory developed for the treatment of the Liou- , , , ,
ville equation[3] can be applied. Therefore, expanding Eq. _ Xy (74 87),py(7+ 87)] 9[X1(7),p1(7)]
(1) up to the first order of the interaction constanwill x1(7),p1(1)] Ax*,p1™)
retrieve the result. Correspondingly, the combination of Egs.
(2), (4), and(5) yields the initial condition 1 —or-L eE[X(r).7]
=de 23 J(7)
St/im 1
fi(1 ,1;t,t)=Nf f(1,... N;t)8(1'—1)d2---dN I ([1+o()]. 16
=f(1;08(1' 1), (11 Hence @/d7)J(9)=0 and J(r)=1, which implies
dx;dp;= dxl*dp . The point is theE’ is not explicitly
fl(l’,2;t,t)=N(N—1)f f(1,... N;t)o(1' —1) dependent orpg, otherwise no conclusive result could be
brought about. If Eqs(6) and (13) combined, we find that
xd1d3---dN the first term on the right-hand side of E&) vanishes. The

proof is straightforward,
=f,(1",2;1). (12)

azf P1P; 8(X—Xq) 8(x—x1)f1(1",1;t+ 7,t)d1’'d1
Heref,(1;t) andf,(1',2;t) are the one-body and two-body
distribution function, respectively. _ ' oy o )
Equation(7) or (9) is nothing but the one-body Liouville _f P1P18(X—X1) (X —X1)f1(1;1)
equation except that the external electric field is mean field.
It is easy to obtain the formal solutions from Eq@g), (9), )

| o 1*,pi*,s)ds—
(11), and(12): X1 fovl(xl (SRS X1
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X o

p1+f eE'[x1(x1* ,p1*,s),s]ds— pl)dl’dl
0

:f plpifl(X,p;t)tS( fovi(Xi* pr* ,S)ds)

X8

py+ fOeE’[Xi(Xi* ,p1*,s),s]ds— pl)
xdp;dp;, (17)

!

in general, particularly for—oo, [fv;(x{* ,p1* ,s)ds does

not vanish andr equals zero. Therefore, a meaningful result
is found that the correlation of the same particle at differen
time does not contribute to the time correlation of the mo
mentum at all. Then, employing the measure preserving an

substituting the first equality of Eq14) into Eq. (6), one
may get

<p(t)p(r+t)>x=f P2P1 8(X—Xz) 8(X—X1)

X fa(x1*,p1* X2, p2;t)dx ¥ dpr*

Xdx,dp, for 77—,

(18)
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fa(X1,P1,%2,P2;1) = f1(X1,P1; 1) f1(X2,P2;51)
+9(Xg,P1.X2,P2;t)
~f1(Xqy,p1;t) fa(X1,p25t)
J
] (X2=X1) a—)(lf1(X1-p2§t)
X F1(Xq,p1;t) +9(X1,P1,X2,P2;51).

(20)

In the last line, the spatial inhomogeneity accounts for the
second term ang is the pair correlation. The second term is

the order of|[{v1ds|/L;mn, WhereL;,, is the characteristic

scale of spatial inhomogeneity. If the plasma is weakly inho-

tmogeneousj_inh is sufficiently large,|fJvids|/Lisn<l so

gwis term can be neglected. In additianis neglected when
se of the mean field approximation is made. In this way,
fo(x1™ ,p1™ X+ fGvi(X1* ,p1* ,s)ds,p,;t) is simplified
asfi(x1*,p1* ;1) f1(x1* ,p2;t) so that Eq(19) becomes

<p(t)p(7+t)>ave

= lim L*lf pz{pi*—fTeE’[Xi(Xi* .p1* ,s),s]ds

Lo 0

Xf10x* . p1" 0 f104™ 2 ) dx " dpy* dp,

Since in most cases, only total current-current correlation

is of interest, just take average ¢p(t)p(7+t)), over the
whole space. Employing Eq18), the spatial average of

(P()p(r+1))x is
<p(t)p( T+t)>ave

L/2
—iim L[ ax(p(p(r+0),

L—oo

= lim L_lf P2P18(X1—X2) Fa(X1* ,p1™ X2, P231)
L—oo
X dx;*dp;*dx,dp,

“im Lt pz[pa*— [TeEnaog® it 9).s1as

L—o 0

X 6

;
* * *
X1 +foui(x1 ,p1* ,s)ds—x,

X fo(X1*,p1* X2, P2;t)dx ¥ dp;y* dx,dp,

L—oo 0

= lim L‘lf pz[pi*—J eE'[x1(x1* ,p;* ,s),s]ds

Xf,

it o [ ot o st
Xdxi{*dp*dp,, 19

wherelL is the 1D volume of the systerf, can be written as

= lim Lilj Pop1* Fa(X1* ,pr* i) Fo(X1™ ,p2st)

Lo

Xdx;*dp;*dp,

— lim Lilj dxy*dpr*dp,fi(x1* ,pi* i)

L—o

T

X fq(x1* ,pz;t)pzf eE'[x1(x1* ,p1*,s),s]ds. (21

0

To be specific, only the~dependent part, i.e., the second
term, is of interest

<p(t)p(7+t)>ave~ lim L_lf dX:’L*dpi*defl(Xi* vpi* i)

L—o

X fq(xg* ,pz:t>p2fo eF’

X[Xi(xi* ,pi* ,S),s]ds for 7—oo.
(22

Ill. AN ANALYSIS OF THE LONG-TIME TAILS
CORRELATION OF MOMENTUM

One can see from Eq$10) and (18), it is E’, to which
the correlation of two different particles at different time
gives rise, that contributes to the time correlation of momen-
tum. Strictly speaking, in view of weak inhomogenei/, is
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greatly attributed to the pair correlatignwhich is part off, T

[see Eq.(20)]. If the fluctuation, hencé&’, is small, the j ds E(((S)N—Sﬁze(ik)_lf dx;*dpy*

solution to Egs(9) and (10) can be found according to the

famous linear Landau damping thedd]. Therefore, it is T 4

natural to expect that the time correlation decays exponen- Xfa(X™ Py 'X2'p2)f ds

tially. However, the method does not hold for large fluctua- _ e

tion and a new version must be proposed. Fortunately, the xexd —iksu(x;* ,p1*)] for 7—co.
method developed in Ref5] can be applied because of the (29)
analogy between Eg$9) and(10) and the ordinary Vlasov-

Poisson equations. Exerting inverse Fourier series expansion on ) gives
First, impose periodic boundary condition dp(1’,2t
+7,t) in x; and the period id, which is sufficiently large. f
Expandingf,(1’,2t+ 7,t) andE’(x;,t+ 7) in a Fourier se-

ries

ds E'[x1(x1* ,p1* .S).s]
0

=—4mel 1, (ik)’lf dx;* dpj*
f1(17,2:t+ 7,0 =(271) LD f1(k,p Xa,Pait+ ) “
k

x f I!*, r/*, ’ de ikx! r*, /*,
X exp(ikxy), (23 2(X1" P17 . X2,P2) o sexplikxy(x;™ ,p1” ,S)]

xexp —ikxy(x7* ,p7*,9)]
E'(x,,7)=271)" 1>, EL(r)expikx}). (24)
! w Brlexpio ~—4mel D (ik)’lfdx’l'*dp’l’*

k

Differentiating Eq.(10) with respect tox; and taking Egs. rr 4 . v %
(23) and(24) into account, we then obtain XTo(X1™ .17 X2,P2) | dsexpiksu(x,™,py")]

xexd —iksu(x7* ,p7*)]
E{<(T)=—8772e(ik)_lf dxidp;fi(1’,2;t+ 7,t)
—amel S k2 [ drdpl* 04 pL* xp)

k

xexp(—ikx]). (25
X[u(xg* ,pr*) —u(xy* ,pi*)]~*
E);;mn;%k:z?ouse of the Liouville theorem, this can be trans- X explikru(x)* ,pi*)lexd —ikru(x* ,pr*)], (29)
for r—. Substituting this into Eq(22) yields
Eu(r)= —8772e(ik)*1f dxy*dpl* f1(x7* ,p1* ,Xo,p2:t,t) . L/2
(BOP(+ 0} i L[ axi* [ api [ ap,
L—oo -

xexd —ikxy(x7* ,p7* ,7)]

XFy(xg* ,pr* D Fa(X1*  p2;t)p2

:_Bﬂze(ik)_lj dxy*dp* (X" ,pT* X2, P2)

X 4mel 1>, k= 2exdikru(x;* ,pi*)]
K

xexp —ikxy(xy* ,pT*, 7)]. (26)
Thus X f dxy* dpy* fo(X1* ,pT* X2, P2)
X[u(x;* ,py*) —u(x{* ,pr*)]
fods E,Q(s)=—8772e(ik)‘1f dx;*dpy* xexd —iksu(x{* ,pi*)] for r—oe.

) (30)
Xf1(XT*,PT* X2, P2) jo ds
e u(x;*,p1*) with the assistance of the computer simulation
Xexp —ikxy(x1",p1" ,9)]. 27 in Ref. [5]. Allowance for the rapid vibration of exjifu) at

It has been proven that there exist stationary points for

large 7 and the assumption of the smoothness of

For larger, due to the decay of the fluctuation of the electric f2(<1" ,P1" X2, P2)[U(X1™ ,p1*) —u (X" 1P'1'*)]f%1 the in-
field, the particle tends to uniform motion with velocitySo  tegration overx;* ,pi* is dominated by the vicinity of the

we can facilitate the above equation as stationary pointu(x;* ,p7*), hence is the order of 1.
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Jaer. 2t vap, Jg(1'. 2; t+, dp’,
f -2 ) X, ' 2 x f 2 j %, ' V2 X
FX t+) FX )
Ve
/
r 7R X 17 X ' iz X T2 x|

(a) (b)

FIG. 1. The schematic illustration of the long-time tails. Top: The two-time correlation of two different particles. Only pair correlation
is designated sincg’ is greatly attributed tg in view of weak inhomogeneity. Bottom: The fluctuating potential arising from the two-time
correlation.(a) For the strong two-time correlation, the magnitude of potential is laifgeFor the two-time correlation which is weak or
decays fast, the magnitude of potential is smlis essential that the integration ovef be performed just for the space-time correlation.
The origin of thex; axis isx,. Herex,, p,, andt should be understood as paramejers.

Moreover, it is reasonable to suppose that after the integrancluded in Fig. 1. Sincd f,(1',2;t+ 7,t)dp; is x; depen-
tion overxy* ,p7* , thex;* ,p;*-dependent integrand is also dent, according to Eq(10), the virtual potentiale’(x;,t
smooth. For the same reason, the integration B{&rp;* is + 7) occurs, which plays a central role in the appearance of
the order ofr 2, thus(p(t)p(7+1)).eis the order ofr~2%  the long-time tails. If the two-time correlation of two differ-
ent particles is weak or decays fast, particle 1, in the course
(P()P(T+1))aye~ 7 2 for 700, (31  of time (t+7) (t refers to a parametgrescapes from the
potential, in turn, leading to exponential decay. Otherwise,

How the large fluctuation leads to the long-time tails canParticle 1 is readily bounded up in the virtual potential,

generally be illustrated by Fig. 1. In the sense of statistics, if¥Nich accounts for the occurrence of the long-time tails.
particle 2 is localized ax, at timet, due to two-time corre- Therein the close relationship between the time correlation

lation f,(1',2;t+ 7.t), there is electric charge distribution (i.e., fluctuation and dispersion, which in the given context

ith t10 th itioR. in the virtual ! att refers to nonlinear Landau damping, can be thrashed out. It
with respect o the positior; In the virtual space; at ime ., 5t pe stressed that the mechanism of the long-time talil

(t+7), which gives rise to virtual potentia’(x; ,t+7) ac-  correlation in the context differs greatly from what has been
cording to Eq(10). If either the magnitude op’ is small or  interpreted by previous theories, i.e., the long wavelength
¢' decays sufficiently fast, no bouncing in the virtual poten-dissipative hydrodynamics. In essence, the system consid-
tial occurs, and the theory would be linear, hence the timered here is reversibly dispersive. Moreover, with the aid of
correlation decays exponentially. Otherwise, particle 1 canhe traditional BBGKY theory, the direct analysis of the time
bounce in the potential in the course of timer(r) so that correlation function has given the authors insight into the
the time correlation decays algebraicalbee Ref[5]). dispersive features of the collisionless plasma.
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