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Time correlation of momentum in a collisionless plasma due to large fluctuations
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The present paper shows that in one-dimensional collisionless plasma, due to large fluctuation, the time
correlation of momentum asymptotically behaves inverse quadratically with time. The long-time tail correla-
tion is closely related to nonlinear Landau damping@M.B. Isichenko, Phys. Rev. Lett.78, 2369 ~1997!#.
Furthermore, it reveals the possible relationship between fluctuation and dispersion. The result indicates that
the long-time tail correlation can also occur in a reversibly dispersive system, where the previous theories are
invalid. A by-product proves that it may be efficient to investigate the dispersive features of collisionless
plasma in view of time correlation.@S1063-651X~99!03206-7#

PACS number~s!: 52.25.Gj, 52.25.Dg
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I. INTRODUCTION

Extensive attention has been paid to long-time tail cor
lation since Alder and Wainwright inspected the behavior
molecular dynamical simulation in 1967@1#. Nowadays it
is well known that such an asymptotic behavior is related
the long wavelength dissipative hydrodynamics@2#. In-
deed, detailed calculations show that the time correlation
volves hydrodynamic shear and thermal modes. Howe
many questions remain unanswered. For instance, the q
tion of whether long-time tail correlation exists beyond irr
versibly dissipative system is of great interest to us.

In the present work, based on the celebrated Bogoliub
Born-Green-Kirkwood-Yvon~BBGKY! theory and the mean
field approximation, the time correlation of momentum
one-dimensional~1D! collisionless plasma is derived. Fu
thermore, the time correlation is proved to behave inve
quadratically with time asymptotically, due to large fluctu
tion.

II. THE DERIVATION OF THE TIME CORRELATION
OF MOMENTUM

Consider anN-body interacting system and introduce t
so-called two-ensemble distribution function, sa
f (18,28, . . . ,N8,1,2, . . . ,N;t1t,t), which represents the
number density of such states as in the neighborhood of
state (1,2, . . . ,N) at timet while in the neighborhood of the
state (18,28, . . . ,N8) at time (t1t). Here k5(xk ,pk),
k85(xk8 ,pk8), andxks,pks(xk8s,pk8s), are the coordinates an
momenta of particles. Then, the well-known continuity equ
tion and the measure preserving yield reads
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k51

N

vk8•“x
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N

Fk8•¹p
k8D

3 f ~18, . . . ,N8,1, . . . ,N;t1t,t !50, ~1!

where Fk8 is the force exerted on particlek at time
(t1t). Moreover, it is not difficult to obtain the corre
sponding initial condition
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f ~18, . . . ,N8,1, . . . ,N;t,t !

5 f ~1, . . . ,N;t !d~1821! . . . d~N82N!, ~2!

where f (1,2, . . . ,N;t) is the N-body distribution function.
Equation~1! is similar to the usual Liouville equation, bu
not so trivial. It can be seen that Eqs.~1! and~2! are greatly
advantageous to systematical introduction of microscopic
proximation into the discussion of fluctuation in the absen
of the complete knowledge of theN-body problem. In addi-
tion, emphasis is placed on that the initial condition is n
arbitrary.

For the one-body dynamical variable~e.g., momentump!,
the local time correlation is

^p~ t !p~ t1t!&x5E (
j 51

N

(
k51

N

pjd~x2xj !pk8d~x2xk8!

3 f ~18, . . . ,N8,1, . . . ,N;t1t,t !

3d18¯dN8d1¯dN. ~3!

With the employment of the symmetry of arguments and
definitions as follows:

f 1~18,1;t1t,t !5NE f ~18, . . . ,N8,1, . . . ,N;t1t,t !

3d28¯dN8d2¯dN, ~4!

f 1~18,2;t1t,t !5N~N21!E f ~18, . . . ,N8,1, . . . ,N;t1t,t !

3d28¯dN8d1d3¯dN, ~5!

Eq. ~3! is reduced to
7068 ©1999 The American Physical Society
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^p~ t !p~ t1t!&x5E p1p18d~x2x1!d~x2x18! f 1~18,1;t1t,t !

3d18d11E p2p18d~x2x2!d~x2x18!

3 f 1~18,2;t1t,t !d18d2. ~6!

So far, all the results are exact, but formal. In the rest
this paper, they are put into practice in the case of 1D co
sionless plasma~hence the bold type ofxk’s andpk’s is not
in use from now on!. Based on the BBGKY theory and th
mean field approximation, the following equations can
obtained from Eqs.~1!, ~4!, and~5!:

F ]

]t
1v18

]

]x18
2eE8~x18 ,t!

]

]p18
G f 1~18,1;t1t,t !50, ~7!

]

]x18
E8~x18 ,t!524peF E f 1~18,1;t1t,t !dp182Zn1G , ~8!

and

F ]

]t
1v18

]

]x18
2eE8~x18 ,t!

]

]p18
G f 1~18,2;t1t,t !50, ~9!

]

]x18
E8~x18 ,t!524peF E f 1~18,2;t1t,t !dp182Zn1G , ~10!

in the absence of external field. In Eqs.~8! and ~10!, the
uniform ion background has been taken into account,Z is the
ion electric charge number, andn1 is the ion number den
sity. In fact, Eqs.~7!–~10! can be derived on the basis o
more rigorous mathematics. The crucial point is that if t
parameters 1, . . . ,N in Eq. ~1! are neglected for the momen
Eq. ~1! turns into the ordinary Liouville equation, thus th
perturbation theory developed for the treatment of the Li
ville equation@3# can be applied. Therefore, expanding E
~1! up to the first order of the interaction constante will
retrieve the result. Correspondingly, the combination of E
~2!, ~4!, and~5! yields the initial condition

f 1~18,1;t,t !5NE f ~1, . . . ,N;t !d~1821!d2¯dN

5 f 1~1;t !d~1821!, ~11!

f 1~18,2;t,t !5N~N21!E f ~1, . . . ,N;t !d~1821!

3d1d3¯dN

5 f 2~18,2;t !. ~12!

Here f 1(1;t) and f 2(18,2;t) are the one-body and two-bod
distribution function, respectively.

Equation~7! or ~9! is nothing but the one-body Liouville
equation except that the external electric field is mean fi
It is easy to obtain the formal solutions from Eqs.~7!, ~9!,
~11!, and~12!:
f
i-

e

e

-
.

s.

d.

f 1~18,1;t1t,t !

5 f 1~1;t !d~x18* 2x1!d~p18* 2p1!

5 f 1~1;t !dS x182E
0

t

v18~x18* ,p18* ,s!ds2x1D
3dS p181E

0

t

eE8@x18~x18* ,p18* ,s!,s#ds2p1D , ~13!

f 1~18,2;t1t,t !5 f 2~x18* ,p18* ,x2 ,p2 ;t !

5 f 2S x182E
0

t

v18~x18* ,p18* ,s!ds,p18

1E
0

t

eE8@x18~x18* ,p18* ,s!,s#ds,x2 ,p2 ;t D .

~14!

Here~and henceforth! we denote the initial values ofx18 , v18 ,
andp18 at t50 by x18* , v18* , andp18* . x18(s), v18(s) are the
trajectory and velocity of the motion under the mean fie
with the initial conditionsx18(0)5x18* , v18(0)5v18* . In the
derivation of the first equalities of Eqs.~13! and ~14!, the
measure preserving of the motion under the mean field
used. The property of measure preserving is not so appa
as in Hamiltonian dynamics. In fact, for the infinitesim
time intervaldt,

x185x18~t!1v18~t!dt, p185p18~t!2eE8@x18~t!,t#dt, ~15!

and the Jacobian is

J~t1dt!5
]~x18 ,p18!

]~x18* ,p18* !

5
]@x18~t1dt!,p18~t1dt!#

]@x18~t!,p18~t!#

]@x18~t!,p18~t!#

]~x18* ,p18* !

5detS 1 2dt
]

]x18
eE8@x18~t!,t#

dt/m 1
D J~t!

5J~t!@11o~t!#. ~16!

Hence (d/dt)J(t)50 and J(t)51, which implies
dx18dp185dx18* dp18* . The point is theE8 is not explicitly
dependent onp18 , otherwise no conclusive result could b
brought about. If Eqs.~6! and ~13! combined, we find that
the first term on the right-hand side of Eq.~6! vanishes. The
proof is straightforward,

a5E p1p18d~x2x1!d~x2x18! f 1~18,1;t1t,t !d18d1

5E p1p18d~x2x1!d~x2x18! f 1~1;t !

3dS x182E
0

t

v18~x18* ,p18* ,s!ds2x1D
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3dS p181E
0

t

eE8@x18~x18* ,p18* ,s!,s#ds2p1D d18d1

5E p1p18 f 1~x,p;t !dS E
0

t

v18~x18* ,p18* ,s!dsD
3dS p181E

0

t

eE8@x18~x18* ,p18* ,s!,s#ds2p1D
3dp18dp1 , ~17!

in general, particularly fort→`, *0
tv18(x18* ,p18* ,s)ds does

not vanish anda equals zero. Therefore, a meaningful res
is found that the correlation of the same particle at differ
time does not contribute to the time correlation of the m
mentum at all. Then, employing the measure preserving
substituting the first equality of Eq.~14! into Eq. ~6!, one
may get

^p~ t !p~t1t !&x5E p2p18d~x2x2!d~x2x18!

3 f 2~x18* ,p18* ,x2 ,p2 ;t !dx18* dp18*

3dx2dp2 for t→`. ~18!

Since in most cases, only total current-current correlat
is of interest, just take average on^p(t)p(t1t)&x over the
whole space. Employing Eq.~18!, the spatial average o
^p(t)p(t1t)&x is

^p~ t !p~t1t !&ave

5 lim
L→`

L21E
2L/2

L/2

dx^p~ t !p~t1t !&x

5 lim
L→`

L21E p2p18d~x182x2! f 2~x18* ,p18* ,x2 ,p2 ;t !

3dx18* dp18* dx2dp2

5 lim
L→`

L21E p2Fp18* 2E
0

t

eE8@x18~x18* ,p18* ,s!,s#dsG
3dFx18* 1E

0

t

v18~x18* ,p18* ,s!ds2x2G
3 f 2~x18* ,p18* ,x2 ,p2 ;t !dx18* dp18* dx2dp2

5 lim
L→`

L21E p2Fp18* 2E
0

t

eE8@x18~x18* ,p18* ,s!,s#dsG
3 f 2S x18* ,p18* ,x18* 1E

0

t

v18~x18* ,p18* ,s!ds,p2 ;t D
3dx18* dp18* dp2 , ~19!

whereL is the 1D volume of the system.f 2 can be written as
t
t
-
d

n

f 2~x1 ,p1 ,x2 ,p2 ;t !5 f 1~x1 ,p1 ;t ! f 1~x2 ,p2 ;t !

1g~x1 ,p1 ,x2 ,p2 ;t !

' f 1~x1 ,p1 ;t ! f 1~x1 ,p2 ;t !

1F ~x22x1!
]

]x1
f 1~x1 ,p2 ;t !G

3 f 1~x1 ,p1 ;t !1g~x1 ,p1 ,x2 ,p2 ;t !.

~20!

In the last line, the spatial inhomogeneity accounts for
second term andg is the pair correlation. The second term
the order ofu*0

tv18dsu/L inh , whereL inh is the characteristic
scale of spatial inhomogeneity. If the plasma is weakly inh
mogeneous,L inh is sufficiently large,u*0

tv18dsu/L inh!1 so
this term can be neglected. In addition,g is neglected when
use of the mean field approximation is made. In this w
f 2(x18* ,p18* ,x18* 1*0

tv18(x18* ,p18* ,s)ds,p2 ;t) is simplified

as f 1(x18* ,p18* ;t) f 1(x18* ,p2 ;t) so that Eq.~19! becomes

^p~ t !p~t1t !&ave

5 lim
L→`

L21E p2Fp18* 2E
0

t

eE8@x18~x18* ,p18* ,s!,s#dsG
3 f 1~x18* ,p18* ;t ! f 1~x18* ,p28 ;t !dx18* dp18* dp2

5 lim
L→`

L21E p2p18* f 1~x18* ,p18* ;t ! f 1~x18* ,p2 ;t !

3dx18* dp18* dp2

2 lim
L→`

L21E dx18* dp18* dp2f 1~x18* ,p18* ;t !

3 f 1~x18* ,p2 ;t !p2E
0

t

eE8@x18~x18* ,p18* ,s!,s#ds. ~21!

To be specific, only thet-dependent part, i.e., the secon
term, is of interest

^p~ t !p~t1t !&ave; lim
L→`

L21E dx18* dp18* dp2f 1~x18* ,p18* ;t !

3 f 1~x18* ,p2 ;t !p2E
0

t

eE8

3@x18~x18* ,p18* ,s!,s#ds for t→`.

~22!

III. AN ANALYSIS OF THE LONG-TIME TAILS
CORRELATION OF MOMENTUM

One can see from Eqs.~10! and ~18!, it is E8, to which
the correlation of two different particles at different tim
gives rise, that contributes to the time correlation of mom
tum. Strictly speaking, in view of weak inhomogeneity,E8 is
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greatly attributed to the pair correlationg, which is part off 2
@see Eq.~20!#. If the fluctuation, henceE8, is small, the
solution to Eqs.~9! and ~10! can be found according to th
famous linear Landau damping theory@4#. Therefore, it is
natural to expect that the time correlation decays expon
tially. However, the method does not hold for large fluctu
tion and a new version must be proposed. Fortunately,
method developed in Ref.@5# can be applied because of th
analogy between Eqs.~9! and~10! and the ordinary Vlasov-
Poisson equations.

First, impose periodic boundary condition onf 1(18,2,t
1t,t) in x18 and the period isl, which is sufficiently large.
Expandingf 1(18,2,t1t,t) andE8(x18 ,t1t) in a Fourier se-
ries

f 1~18,2;t1t,t !5~2p l !21(
k

f 1~k,p18 ,x2 ,p2 ;t1t,t !

3exp~ ikx18!, ~23!

E8~x18 ,t!5~2p l !21(
k

Ek8~t!exp~ ikx18!. ~24!

Differentiating Eq.~10! with respect tox18 and taking Eqs.
~23! and ~24! into account, we then obtain

Ek8~t!528p2e~ ik !21E dx18dp18 f 1~18,2;t1t,t !

3exp~2 ikx18!. ~25!

By making use of the Liouville theorem, this can be tran
formed into

Ek8~t!528p2e~ ik !21E dx19* dp19* f 1~x19* ,p19* ,x2 ,p2 ;t,t !

3exp@2 ikx18~x19* ,p19* ,t!#

528p2e~ ik !21E dx19* dp19* f 1~x19* ,p19* ,x2 ,p2!

3exp@2 ikx18~x19* ,p19* ,t!#. ~26!

Thus

E
0

t

ds Ek8~s!528p2e~ ik !21E dx19* dp19*

3 f 1~x19* ,p19* ,x2 ,p2!E
0

t

ds

3exp@2 ikx18~x19* ,p19* ,s!#. ~27!

For larget, due to the decay of the fluctuation of the elect
field, the particle tends to uniform motion with velocityu. So
we can facilitate the above equation as
n-
-
e

-

E t

ds Ek8~s!;28p2e~ ik !21E dx19* dp19*

3 f 2~x19* ,p19* ,x2 ,p2!E t

ds

3exp@2 iksu~x19* ,p19* !# for t→`.

~28!

Exerting inverse Fourier series expansion on Eq.~26! gives

E
0

t

ds E8@x18~x18* ,p18* ,s!,s#

524pel21(
k

~ ik !21E dx19* dp19*

3 f 2~x19* ,p19* ,x2 ,p2!E
0

t

dsexp@ ikx18~x18* ,p18* ,s!#

3exp@2 ikx18~x19* ,p19* ,s!#

;24pel21(
k

~ ik !21E dx19* dp19*

3 f 2~x19* ,p19* ,x2 ,p2!E t

dsexp@ iksu~x18* ,p18* !#

3exp@2 iksu~x19* ,p19* !#

54pel21(
k

k22E dx19* dp19* f 2~x19* ,p19* ,x2 ,p2!

3@u~x18* ,p18* !2u~x19* ,p19* !#21

3exp@ iktu~x18* ,p18* !#exp@2 iktu~x19* ,p19* !#, ~29!

for t→`. Substituting this into Eq.~22! yields

^p~ t !p~t1t !&ave; lim
L→`

L21E
2L/2

L/2

dx18* E dp18* E dp2

3 f 1~x18* ,p18* ;t ! f 1~x18* ,p2 ;t !p2

34pel21(
k

k22 exp@ iktu~x18* ,p18* !#

3E dx19* dp19* f 2~x19* ,p19* ,x2 ,p2!

3@u~x18* ,p18* !2u~x19* ,p19* !#21

3exp@2 iksu~x19* ,p19* !# for t→`.

~30!

It has been proven that there exist stationary points
u(x18* ,p18* ) with the assistance of the computer simulati
in Ref. @5#. Allowance for the rapid vibration of exp(ikru) at
large t and the assumption of the smoothness
f 2(x19* ,p19* ,x2 ,p2)@u(x18* ,p18* )2u(x19* ,p19* )#21, the in-
tegration overx19* ,p19* is dominated by the vicinity of the
stationary pointu(x19* ,p19* ), hence is the order oft21.
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FIG. 1. The schematic illustration of the long-time tails. Top: The two-time correlation of two different particles. Only pair corre
is designated sinceE8 is greatly attributed tog in view of weak inhomogeneity. Bottom: The fluctuating potential arising from the two-t
correlation.~a! For the strong two-time correlation, the magnitude of potential is large.~b! For the two-time correlation which is weak o
decays fast, the magnitude of potential is small.~It is essential that the integration overp18 be performed just for the space-time correlatio
The origin of thex18 axis isx2 . Herex2 , p2 , andt should be understood as parameters.!
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Moreover, it is reasonable to suppose that after the inte
tion overx19* ,p19* , thex18* ,p18* -dependent integrand is als
smooth. For the same reason, the integration overx18* ,p18* is
the order oft21, thus^p(t)p(t1t)&ave is the order oft22:

^p~ t !p~t1t !&ave;t22 for t→`. ~31!

How the large fluctuation leads to the long-time tails c
generally be illustrated by Fig. 1. In the sense of statistics
particle 2 is localized atx2 at time t, due to two-time corre-
lation f 1(18,2;t1t,t), there is electric charge distributio
with respect to the positionx2 in the virtual spacex18 at time
(t1t), which gives rise to virtual potentialf8(x18 ,t1t) ac-
cording to Eq.~10!. If either the magnitude off8 is small or
f8 decays sufficiently fast, no bouncing in the virtual pote
tial occurs, and the theory would be linear, hence the t
correlation decays exponentially. Otherwise, particle 1
bounce in the potential in the course of time (t1t) so that
the time correlation decays algebraically~see Ref.@5#!.

IV. CONCLUSIONS

In conclusion, it has been demonstrated that there ex
long-time tails correlation ast22 in 1D collisionless plasma
arising from large fluctuation. The physical picture can
a-

if

-
e
n

ts

e

included in Fig. 1. Since* f 1(18,2;t1t,t)dp18 is x18 depen-
dent, according to Eq.~10!, the virtual potentialf8(x18 ,t
1t) occurs, which plays a central role in the appearance
the long-time tails. If the two-time correlation of two differ
ent particles is weak or decays fast, particle 1, in the cou
of time (t1t) ~t refers to a parameter!, escapes from the
potential, in turn, leading to exponential decay. Otherwi
particle 1 is readily bounded up in the virtual potentia
which accounts for the occurrence of the long-time ta
Therein the close relationship between the time correla
~i.e., fluctuation! and dispersion, which in the given conte
refers to nonlinear Landau damping, can be thrashed ou
must be stressed that the mechanism of the long-time
correlation in the context differs greatly from what has be
interpreted by previous theories, i.e., the long wavelen
dissipative hydrodynamics. In essence, the system con
ered here is reversibly dispersive. Moreover, with the aid
the traditional BBGKY theory, the direct analysis of the tim
correlation function has given the authors insight into t
dispersive features of the collisionless plasma.
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